
A Brief History of As-Easy-As

An interview with co-creator Paris Karahalios

Copyright © 2025 Technically We Write

Paris Karahalios. Jim Hall (ed.). (2025) A Brief
History of As-Easy-As. Technically We Write.

Published under the Creative Commons
Attribution ShareAlike license.

Contents

Introduction...7

Why I loved As-Easy-As...7

About Paris...13

Let’s start with an introduction. Who are you, and
what do you do?...13
You were a co-founder of TRIUS. How did the
company start?..14
How did TRIUS change over time?.........................17
TRIUS Inc shared the registration code for As-Easy-
As, that was a great gesture to say “Thanks” to the
community of original users. Were you behind this
decision?..24

About As-Easy-As...27

You co-created the As-Easy-As spreadsheet for
DOS. How did that come about? Why write a
spreadsheet?..27

How did you create As-Easy-As? What was the
process to design and create a spreadsheet
application?...29
What were some standout features in As-Easy-As?
...31
As-Easy-As was shareware. What was “shareware”
and how did that work out as a business model?. 34
As-Easy-As was originally a DOS program. What
things do you have to “balance” when you write
DOS programs?..41
What’s an example of something you can do in
DOS programming that’s hard to do in Windows
or Linux?..43
What things have gotten easier in programming? 44
What are some “tricks” or methods you used to
write a DOS application like this?............................45
As-Easy-As was originally written in Turbo Pascal,
then Delphi. Why change to Delphi?......................46
How did you “discover” computers?......................47
What was your first personal computer? What did
you find exciting about it?..49
What was your first programming language?.......51
Did you use computers and programming to help
you in your Nuclear Engineering program?..........51
Do you still do programming today?......................52
Do you have any examples of interesting ways that
people used As-Easy-As?..53

How did you decide what features to add in the
next version?...55
Was As-Easy-As used mostly by engineers, or was
it used by office workers too?...................................57
Are there any features that you wish you had
added to As-Easy-As for DOS?................................64
Programmers are the best at spotting their own
bugs after-the-fact. Are there any bugs in As-Easy-
As that you look back on and think “I wish we’d
fixed that”?..67

About the manual...71

Registered users got a printed manual. How was
this written?...71
What system or word processor did you use to
produce the manual?...72
What was the process to write the first manual?...73
What fonts did you use for the manual? What’s
your favorite font for print?......................................74
What was the editing and publishing process like?
...75
What was the printing process like? How did you
print the manual?...76
What did the manual look like?...............................77

Thank you!...93

How I used As-Easy-As...94

Introduction

Why I loved As-Easy-As

Jim Hall (editor)

In 1990, entered the undergraduate physics program
at the University of Wisconsin-River Falls. Our
physics department had a very strong lab program;
every semester, we physics students performed
experiments that exercised concepts we learned in the
classroom.

The professor who designed the lab program made
sure we understood the error inherent in taking
measurements. Every experiment required us to do
an analysis of uncertainties of our measurements, a
grinding process we called “error analysis.” In theory,

7

you can calculate the mean and standard deviation of
a measurement by hand, but it’s hard work. It really
calls for a computer to do it.

And that’s where As-Easy-As really stood out.

As-Easy-As was an example of shareware, a new way
to sell software. Instead of purchasing an expensive
“boxed” application from a computer store, you could
download a copy of a shareware program from a dial-
up bulletin board system. I also subscribed to a
catalog that listed the best shareware applications and
games; for a few dollars, they would mail you a
floppy disk with the shareware programs you wanted
to try. That’s probably where I found As-Easy-As.

With shareware, you could try out the program before
deciding if you wanted to buy it. And they
encouraged you to share the program with others so
they might buy a copy too.

For only $69, I had a powerful spreadsheet
application that let me do all of my lab analysis from
the DOS computer in my dorm room. With As-Easy-
As, I could quickly calculate the values (with
uncertainties) for each of my labs, including linear
regression. When I was done with my analysis, I

8

could print out tables and graphs to my Epson FX-80
dot matrix printer.

I think I bought every new version of As-Easy-As
from then until version 5.7, the last release of the of
the DOS version, released in 1997. I used it for
everything, even after I started a career in IT. Instead
of calculating gradient values and standard
deviations, I used As-Easy-As for typical home office
work such as managing a home budget and figuring
out how much my wife and I could afford in monthly
payments for our first home loan.

I still use DOS today; in fact, I started the FreeDOS
Project in 1994 to create an open source version of
DOS. So it shouldn’t surprise you to know that I boot
FreeDOS to play my favorite DOS games, and to use
my favorite DOS applications. Even in 2025, I still
count As-Easy-As 5.7 for DOS as my most-favorite
spreadsheet application, on any platform.

I found Paris Karahalios on LinkedIn, and I reached
out to ask if I could interview him for an article I
wanted to write. I find that most people will write
about 800 words in an interview, no matter how
many questions you ask. If you ask four questions,
they’ll write long answers for a total of about 800

9

words. If you ask ten questions, they’ll write shorter
answers for about 800 words.

Paris wrote a lot more than that. And he provided a
ton of technical detail about how he and Dave Schulz
created the prototype for As-Easy-As, based on a
sample “spreadsheet”-like program in Borland
TurboPascal. Paris also described how they continued
to add features to the prototype until it had parity
with other spreadsheets like Lotus 1-2-3.

And I was surprised that Paris volunteered to write
more. I sent several follow-up questions, and Paris
shared more details about how they grew TRIUS Inc
as the company behind As-Easy-As, his technical
background, and how they wrote the manual. He also
shared a collection of photos, articles, and letters
about As-Easy-As.

In the end, Paris wrote almost 8,000 words. By
comparison, a short novel (a “novella”) might have
10,000 to 30,000 words. Paris wrote so much that I
wasn’t able to include it all in one article; I split up the
interview into several series:

1. An interview on Coaching Buttons about how
they grew the company

10

2. Another interview on Technically We Write
about writing the manual

3. A series of four interviews on All Things Open
with a “deep dive” on the technology behind
As-Easy-As, and programming the spreadsheet

I wanted to share Paris’s story, so others could read
the whole thing. I collected everything Paris sent me
—every interview answer, every photo, every story—
into this book. This is a brief history of As-Easy-As,
but it’s also a demonstration of why As-Easy-As was
my favorite spreadsheet, and still is.

Dave and Paris created a rare thing: a program that I
love to use. If I didn’t need to share spreadsheets with
others, I think As-Easy-As would fit almost every
spreadsheet need I have today. As-Easy-As can do all
of the modeling and analysis that I need. It can even
do conditional formatting, although in a different way
than you might be used to with more “modern”
spreadsheets like Microsoft Excel, LibreOffice Calc, or
Google Sheets.

I hope this history shows why I loved As-Easy-As,
and maybe you might like to use it too.

11

About Paris

Let’s start with an introduction. Who are you, and
what do you do?

My name is Paris Karahalios. I have a BS and MS
degrees in Nuclear Engineering with an option in
Fusion and emphasis on Radiation accident analysis
and health consequence modeling. I worked in the
nuclear industry for about 10 years before I got into
software development and IT around 1988. I started
my third career about 10 years ago, when TRIUS
stopped operating, as a senior technical project
manager. I am currently the VP of Technical Project
Management at Spire. I thoroughly enjoy what I do
and the group of people I work with. I think of it as a

13

continuous learning game, where I am called to solve
new, challenging problems every day.

While in college, I became infatuated with computers
and by the time I finished in 1980, I had become fairly
proficient in using the CDC Cyber 6400 mainframe at
the school. By that time, I had also written a number
of programs for the TI-59 programmable calculator
with the magnetic cards, which were published in the
PPX TI Library and I had written a payroll program
for the TI-99/4a computer. (I had to save and load the
program each time I used it from a handheld cassette
recorder using a regular cassette - no DAT tapes yet.)

This is just a long-winded way of saying that I had
become a computer geek early in life, and continue to
be one to this date.

You were a co-founder of TRIUS. How did the
company start?

In 1984-85, I was working in the Nuclear Division of a
large AE firm in Boston (Stone & Webster Engineering
Co), where I was spending most of my time on
mathematical and computer modeling of nuclear
accident consequences, using IBM-360 mainframes.

14

Personal Computers were becoming popular and the
company bought a true blue IBM PC-XT for each of
the groups. Real powerful at the time, IBM PC-XT
with two double-sided 5.25” floppy drives, 256 KB
RAM and a single application - Lotus 1-2-3. We had to
sign-up early in the day, or the day before, to reserve
time on the shared PC, it was a hot item!

Some of us Stone & Webster employees formed a PC-
Users group, where we met once a week, during
lunch, and discussed the latest updates to PCs, new
software, ideas on how to use PCs in new ways, etc. I
met Dave Schulz in one of those meetings and we
started hanging around. Dave was a Civil/Piping
Engineer working in a different division of the same
company, but his fundamental knowledge of
computers, computing and software was unmatched!
It was as if his brain worked in the decimal system for
day-to-day life, and in bits and bytes at a native CPU
level when it came to computers. I was impressed
with his depth of knowledge and ability to translate
theory into computer code then, and for the
remaining 28+ years we worked together!

While I was fascinated with the capabilities of Lotus
1-2-3, he had just purchased a copy of Turbo Pascal

15

and was dissecting the rudimentary grid
(spreadsheet) sample app that came with it. Pretty
soon, he started expanding its capabilities and we
started to meet at his desk, discuss and review
progress every day. It was still a basic program, but it
was continuously improved.

At the time, 9-pin dot matrix printers were becoming
inexpensive, but the print quality was lousy. 24-pin
printers could generate “letter quality” print, but
were very expensive. Dave and I spent time
understanding how the printers were driven through
the interrupts and wrote a .COM program (written at
the command line with the debugger included on the
DOS floppy disk). When it ran, it would terminate
and stay resident, it would interrupt BIOS calls to the
printer and would then take over and manipulate the
print head, so that a cheap inexpensive 9-pin printer
could print “letter quality” text. We thought we could
make some extra (side) money selling the program.

Something not many people know is that Dave and I
formed TRIUS so that we could continue developing
and marketing the Printer Enhancement program (if I
recall correctly, it was less than 80 bytes long). In the
meantime, work on the “spreadsheet” program

16

continued. One of Dave’s co-workers had cutely
nicknamed it “As-Easy-AS 1-2-3” (a play on “Lotus 1-
2-3”). We had reached the point where the program
could now read and write Lotus 1-2-3 (.WKS) files - a
breakthrough! All while Dave and I were still
working for Stone & Webster.

How did TRIUS change over time?

As-Easy-As was a very successful program. It was
translated into German, French, Portuguese, Spanish,
Chinese, Italian. It was privately labeled for a number
of Publishers/Distributors. At one time, it was locally
published in 11 countries. In the early 1990s, Dave
and I ended up quitting our jobs and working full
time at TRIUS, eventually hiring a dozen employees,
etc.

Meanwhile, TRIUS had developed and sold other
software, in addition to As-Easy-As. A number of
successful ones were in the area of Computer Aided
Design (CAD).

In the late 1990’s - early 2000’s, a few companies were
interested in licensing our CAD technology to use it

17

as “mapping” engines and we started shifting away
from spreadsheets and CAD and more into
GIS/Mapping. We did not have enough resources to
give As-Easy-As the attention it needed, so we
eventually decided to sunset it.

TRIUS paired up with a new company, UnderTow
Software, which was primarily the main GIS/Mapping
entity. Both companies eventually phased out in the
early 2010s. I keep the triusinc.com domain still
registered alive, because it feels that it’s part of me,
we ran TRIUS for 29 years, with Dave for 26 of those
years.

By the way, for reference, some of the software
products TRIUS developed and published were: As-
Easy-As, Alite, DraftChoice, ProtoCAD 3D, StarFlic,
Pivot, DraftChoice Pro,…

As-Easy-AS and DraftChoice have received multiple
awards like the Shareware Industry Best Business
Application and Best Graphics Software award, the
PC Magazine Best Application readers award and so
on.

Unfortunately, we did not keep a lot of the original
articles, etc. of the successful era of As-Easy-As and

18

TRIUS, but over the last few years people have
forwarded me some clippings in electronic form.

As-Easy-As in L’Actualite Canadienne, 1993

19

Has sliced bread been superseded by the AS-EASY-AS
spreadsheet? Not quite, but there is no doubt that this
spreadsheet is one of the greatest things since SB to
become available to the home community. Version 4.0
of AS-EASY-AS has been in circulation on every
computer bulletin board (BBS) in North America for
some time and this summer Version 5.0 has been
released. The latter has made most of the commands
compatible with those used by LOTUS 1-2-3 and
allows import of text and data files from most programs
such as WordPerfect, Microsoft Word, Lotus 1-2-3,
and dBASE in ASCII format …

20

DraftChoice in Computer Shopper, 1993

If your drawing needs are technical—architectural
drawing or any others that would normally require
drafting tools—then a traditional drawing or paint
program won’t do the job for you … That’s where
DRAFT Choice comes in. Like Envision Publisher and

21

NeoPant, it does a remarkable job of combining ease of
use with sophistication. With a pull-down menu across
the top and a series of buttons down the right-hand
side, you’ll find everything within easy reach …

22

23

TRIUS in CompuServe, 1993

TRIUS Inc of North Andover, Massachusetts, is a
booming international company. It is only seven years
and and has just six employees, but being small
energizes rather than limits co-founders Paris
Karahalios and David A. Schulz …

TRIUS Inc shared the registration code for As-Easy-As,
that was a great gesture to say “Thanks” to the
community of original users. Were you behind this
decision?

Yes, it was my decision to make these programs
available to everyone for free, at that time. There was
some internal pushback, because a couple of
companies had expressed interest in purchasing the
source code, but I felt that people in general had been
good to us and since we were not interested in
investing any more resources in updating these
programs (we had shifted focus by then), we should
let people have them!

Some have asked me “why didn’t you just remove the
registration requirement altogether?” Over the years
we had built a sophisticated registration detection
system interweaved within a number of program
modules, installation module, validations, etc. The

24

effort to “untangle” that, so we can release a version
that would not require registration would be
significant and not really needed.

The forums aren’t there anymore, but Internet
Archive has the announcements, here’s the one for
DOS:

As of 03/11/2004, As-Easy-As for DOS was
discontinued. Copies of the program can still be
downloaded and FREE full licenses can be installed
using the information below. TRIUS no longer
supports or answers questions regarding this program,
but other users visiting these forums might. Here are
the links for the program and the user's manual,

25

Archived announcement from TRIUS Inc forums

Old As-Easy-As v5.7 for DOS program
http://www.triusinc.com/old_files/asa57.exe
Ser Number: 570-110-0424-3 *
* You are asked for this sernum during the installation
of the program. The installation prompted you to fnd it
on the inside cover of the manual. There no manual or
inside cover - THIS is the number to enter.

 Users Manual
http://www.triusinc.com/old_files/asa57_manual.exe
Manual Password: ASA57Licensed3974

26

About As-Easy-As

You co-created the As-Easy-As spreadsheet for DOS.
How did that come about? Why write a spreadsheet?

On April 26, 1986 the Chernobyl reactor accident took
place. Because I had done a lot of research and had
published a number of technical papers on Reactor
Accident Consequence Analyses, a month or so later
the state department selected me to be the US
delegate to the first meeting of Group of Experts in
Consequence Analyses (GRECA) meeting in Paris
France (Russia would not allow us to go to
Chernobyl, yet). The meeting was attended by one
delegate from each of 62 countries, to discuss the
accident, validate mathematical prediction models
and advise governments on next actions.

27

At the end of the meeting, it was decided that all
radiation measurements reports for every country
(the radioactive plume was travelling around the
world) would be sent to me (in the US) where we
would validate it, analyze it and use it to possibly
determine (a) the level of damage to the Chernobyl
reactor core, and (b) movement and depletion of the
radioactive plume over the world.

When I came back to the US and the data started
arriving on a daily basis, I reserved the group’s PC
exclusively each day of the week and realized that we
needed additional storage. We purchased two
external Bernoulli drives (the original model, using
the 8.5”x11”, thick, Bernoulli disks, each storing a
whopping 5 MB worth of data). We solved the data
storage problem. We were using Lotus 1-2-3 to do all
the data manipulation, which served us well, but we
had a new issue. We needed to generate plots of the
tabulated data and the Lotus 1-2-3 graphing
capabilities (which were primarily meant for
business) could not adequately handle the
log/exponential curves we needed to plot needed for
radioactivity decay.

28

Dave and I decided that the way to solve the problem
was to spend more time on the development of As-
Easy-As and focus on scientific plotting. Once these
capabilities were in place (in a matter of a month or
so), we started using As-Easy-As for analyzing the
Chernobyl data and preparing the reports.

No more printer enhancement software, we now
started concentrating on the further development of
As-Easy-As.

How did you create As-Easy-As? What was the
process to design and create a spreadsheet
application?

The process was very simple. Dave and I would meet
at his desk during lunch, or after work. We’d review
the current version of the program, with the changes
we decided to make the day before, make any
adjustments, we’d discuss any new features that
needed to be added, I would compile a list of tests
that I needed to run to validate (a) the user interface,
and (b) more importantly the built-in functions.

You have to realize that all built-in functions in the
program were programmed by us using first

29

principles. Whether it was building amortization
functions, or linear optimization functions, or
trigonometric functions,… we had to come up with
the base analytical formulas, write the code
representing those formulas, implement them and
then independently verify them. And, this was done
for every function in the program!

Sometimes we’d have differing opinions with Dave
and that would result in lengthy discussions later at
night, usually at my house.

The program was written in Turbo Pascal and
eventually in Delphi. Portions of the code were
embedded assembly code and some even optimized
in-line hex code. We’d prototype routines that needed
speed optimization in Assembler, compile it, then
extract the hex code and insert it in Pascal routines.
We re-wrote many of the graphing functions to
bypass the operating system and write directly to
display memory for increased efficiency. Our motto
was “produce the smaller footprint and most efficient
code you can.” Given the limitations on RAM, storage
and distribution media, it made sense.

30

Compatibility with .WKS files was an early goal,
because every spreadsheet program at the time was
using .WKS files.

Focus on Physics and Engineering was because of our
background in science/engineering and because of the
need to use the program, as I mentioned earlier, for
some of the Chernobyl analyses.

What were some standout features in As-Easy-As?

Standout features? It’s like asking a parent “which
one of your children do you love more?” I’ll just list a
couple that come to mind… (a) a very powerful
macro programming language, which was only used
by maybe 2% of As-Easy-As users, but for those who
used it, was irreplaceable. Most users didn’t even
know that the built-in macro language could be used
to model powerful apps with a UI. My comment
about being irreplaceable for some, was based on the
feedback we were getting from users (a benefit of
shareware - the direct communications with the
developers). Users let us know that they had used
macros to model loading cargo ships, real time
monitoring of hundreds of stocks, optimizing floor

31

layouts of new homes, thermodynamic analyses of
new design engine blocks, leasing scenarios for
dealerships across the USA, etc. (b) the ability to
define your own functions. This feature was used by
many users to write functions that were specific to
their graduate studies fields, their businesses, etc.
And, since they were stored in an external file, once
built, they could be imported and used in any
worksheet… There are many more, but if I don’t stop
here, I’ll end up listing every feature of the program.

By the way, this is not known (how could it be), but
before the decision was made to stop development on
As-Easy-As, we were a long way towards developing
a spreadsheet SDK that would allow transparent use
of spreadsheet capabilities integrated within other
applications and had also started work on a built-in
programming language (much more powerful than
macros).

As-Easy-AS received a number of awards from
magazines of that era (PC Magazine, Computer
Shopper, etc.), but for us the most prestigious awards
were:

32

• Shareware Industry Awards - Best Application
(1992) (DOS Version)

• Shareware Industry Awards - Best Application
(1999) (Windows Version)

ASPects, 1993

33

I don’t think that As-Easy-As would compare
favorably with today’s Excel, in terms of features and
capabilities that exploded with the new development
environments that were not available to us. However,
up until a couple of years ago, we used to get
messages from users telling us that they were able to
run As-Easy-As for Windows, using the wine
emulator on Linux, and they liked the small footprint,
meager memory requirements and simplicity of use.

As-Easy-As was shareware. What was “shareware”
and how did that work out as a business model?

There are a number of varying stories as to who first
coined the term “shareware.” Andrew Fluegelman is
credited with first releasing his program PC-Talk as
“freeware,” and Jim Button (Knopf) releasing his PC-
File program as “shareware.” Bob Wallace, the
developer of PC-Write, always mentioned those two
as the ones who started the revolution. There are
many other software developers and small start-ups
that went on to build successful companies using the
“shareware” business model like Bob Wallace (PC-

34

Write), Marshall Magee (Automenu), Tom Rawson
(4DOS), Phil Katz (PKZIP), Scott Miller (Kingdom of
Kroz), John McAfee (McAfee Antivirus), Apogee
Software, id Software, etc.) who could be called “the
grandfathers of shareware,” in a way. (I’m sure I’m
forgetting a few dozen names…)

In any case, it was a fairly straightforward business
model. You develop a software program for the PC.
You give free copies of it to people so they can try it,
encouraging that they give free copies to others. In the
early days, if they liked it and they continued using it,
you asked for a donation. Later on, programmers
asked for payment that entitled users to discounted
upgrades, a printed manual, technical support, etc.
All this in an environment where mainstream
software publishers were taking full page ads in
computer magazines announcing that copying their
software, even for solely back-up purposes, was
illegal. Shareware became the de-facto business model
for individual developers and small companies.

Some shareware companies would turn off certain
functions after the evaluation period (eventually
called crippleware), while others, like TRIUS would
never disable any features, but would display a

35

reminder to register when you started the program.
Yet other companies would display the registration
notice every XX keystrokes, or every YY screen
displays, which eventually made them known as
“nagware.”

The shareware concept was ideal for those early days
of PCs. It worked for users, because they could try
hundreds of programs, before deciding if they were
willing to pay for some of them and it worked for the
developers because they could release a program into
the “sharing” community with zero marketing
budget, generate a captive audience, get useful
feedback, etc. and make some money.

Having said that, a lot of shareware companies,
including TRIUS, eventually ended up spending
capital on marketing and advertising in computer
magazines of the era, as well as placing their products
in retail channels, private labelling them for larger
well known publishers, etc.

36

Meet The Author, PC Shareware Magazine, 1992

37

Meet The Author, PC Shareware Magazine, 1992

38

Meet The Author, PC Shareware Magazine, 1992

39

Meet The Author, PC Shareware Magazine, 1992

40

As-Easy-As was originally a DOS program. What things
do you have to “balance” when you write DOS
programs?

Well, it was an evolving process. When we first got
started, extended memory was not a thing and 640K
was a luxury for most PC users before the mid 1980s.
Since files were compiled into .COM files that needed
to be loaded in a single 64KB memory segment,
because they lacked allocation information, that
presented another limitation. I remember multiple
iterations of optimization to try and keep the code
small and fast. As systems were getting better and
available memory larger, we kept enhancing our
memory models to use more RAM, e.g., the
expanded/extended memory to 1 MB, above the
directly addressable 640K, and later to use up to 500
of 16k-pages or extended RAM (up to 8 MB!).
Eventually, we even implemented a method to
simulate up to 2 MB of virtual RAM on disk, for users
that needed the additional memory, but their system
did not have it.

Dave was primarily the person doing the optimizing
and he was very good at it. I think I’ve mentioned
before how impressive his understanding of
computers and software was! Early on, there were no

41

math co-processors either, so, for example, if you
were writing code that would be using a lot of math
operations, you had to think of possibly
implementing direct bit manipulations by shifting
register bits left or right. Fortunately, Turbo Pascal
allowed you to include in-line machine code
(Assembly Language), which we used a lot to
manipulate hardware directly and get optimization
that was not available in standard Pascal code. We’d
use assembler to optimize specific chunks of code,
then take the assembled hex code and include it in
Pascal functions and procedures.

One of the drawbacks, of course, was that inline
assembly code is highly dependent on the target
platform (CPU architecture and memory model). For
the most part, this was not a problem, though we did
encounter inconsistencies moving from 80286 to 80386
and the 80387 math co-processor. Early on, we had
conditional branching for running the program on
systems with a co-processor and those without one.
The user had to know what they were running and
start the program with an appropriate command line
option, /N486 to bypass CO-processor error trapping.

42

The other area where we used in-line machine code a
lot, was to take over from the operating system and
write directly to video RAM, bypassing the BIOS.
Again, this resulted in better, faster screen writes and
updates, but opened the door to problems with
displays or display adapters that were not 100%
conforming to published specs. More command lines
to start the program in a “special” mode for such
systems, if I remember correctly, /ATT if you were
using an AT&T system with a monochrome monitor,
/ATT2 if you were using a Toshiba laptop, /E for
enhanced graphics adapter, /EM for monochrome
EGA monitors, and so on… I can’t remember them all
by heart, but we ended up with over 30 command line
switches and hundreds of combinations. However,
most PC users at the time were hackers and they
could figure out the right combinations to get the
most out of their PCs.

What’s an example of something you can do in DOS
programming that’s hard to do in Windows or Linux?

The ability to generate the smallest possible files was
always a goal for us and DOS was good at it. Not sure

43

how realistic this example is, but in the early days I
would demonstrate to people how simple it was to
write a program that would display “Hello World,”
using the built in DOS Debugger and the
generated .COM file was only 22 bytes. I think
someone had reduced that to even 20 bytes! What’s
the smallest Windows .EXE that can do that? I believe
because DOS allowed access at the lowest level, it
made it possible to write very tight and fast code. I’m
sure there are many more things one could do in DOS
that cannot, or at least not easily, in Windows. Linux
may be a bit more accessible.

What things have gotten easier in programming?

What I think was the advantage also made it harder.
No built-in function libraries or external ones that
could be linked from your code, you had to write
pretty much everything you needed (well, with the
exception of basic functions). Writing code in
Windows makes thousands of built-in functions
available to you. And, that’s my second pet peeve!
Load everything, whether you need/use it, or not! So
what if your code needs 16 GB of RAM? RAM is

44

cheap, right? No need to optimize, no need to look at
how this affects execution speed, or how it impacts
other apps. Applications now have assumed the
behavior of gasses, “they expand to fill the volume
they are released in.” I have vivid memories of Dave
and I spending hours on what to do to make the
program 128 or 256 bytes smaller, yes bytes. Because
of the limited resources available on the hardware
systems, anything you could do to save even 128
bytes was a plus!

What are some “tricks” or methods you used to write
a DOS application like this?

Not sure I can remember all the “specific coding
tricks,” but as I have mentioned in many other places,
taking over certain operations from the operating
system and bypassing the BIOS was a main goal.
Processing keyboard interrupts and video RAM
interrupts were almost all taken over. Also, coming
up with our own, optimized Run-Length-Encoding
for representing data was a big help. Manipulating
the registers directly to perform routine integer
operations was also used to speed up execution. We

45

made abundant use of overlay files to allow us to run
the program on systems with limited resources,
having a resident portion of the code that was always
loaded and swapping different overlay segments in
and out of memory, as needed.

As-Easy-As was originally written in Turbo Pascal, then
Delphi. Why change to Delphi?

We moved to Delphi when we started porting the
program to Windows. Delphi is essentially an
enhanced, object-oriented version of Turbo Pascal, so
the code conversion was not as bad as it sounds. We
did, however, have to re-architect the program to take
advantage of the OOP model. Delphi’s visual
development environment and support for GUI
applications made development a bit easier. Delphi’s
introduction of a RAD (Rapid Application
Development) approach with visual tools for building
applications was also a great tool.

46

How did you “discover” computers?

As part of the 3rd year curriculum, I had to take a
course in FORTRAN. I found it interesting, but for
some reason it didn’t click! It may have been that we
didn’t have immediate access to the computer. The
university was using an older Digital computer, with
punch cards. We’d write the code long hand in a
notebook, then go to the punch card terminals room
and type it, to generate the punch cards, then put
together the punch cards with a rubber band and
drop them off in the computer operator inbox (the
first card had our name, course, etc.). We’d then have
to wait until the next day, go to the computer
operator room and get our printout (on the wide
green lined computer paper). If the program had
worked and gave us the correct (expected) results,
we’d turn it in for grading. If it failed to execute, or
gave the incorrect results because of errors in the
coding, then we’d go back to the punch card
terminals, make the corrections, generate new punch
cards, drop them in the inbox of the computer
operator and wait till the following day to get our
results. And, if the programming was complex and/or

47

you kept making errors in your coding, this iterative
process would take days… Not a pleasant experience.

Then, in my senior year, I took a course in “numerical
analysis with computers” and the university had just
acquired a CDC Cyber 6400 main computer.
Although we still used punch cards, turnaround time
was now 1-2 hours. What progress - you could now
afford to make coding mistakes and still get your
code corrected and resubmitted a few times all in the
same day! I started getting real interested, and getting
“the bug,” but senior year was almost over, so…

I started on my master’s degree the following year,
same university, same CDC computer, but now we
didn’t have to use punch cards! We used DECwriters,
connected to the computer! You type your code,
submit it real time, it compiles, it executes and you
get the results printed on the DECwriter, right away!
At the same time, a course in Monte Carlo simulations
with computers (required for grad school), taught by
a brilliant professor and a Christmas present of a
TI-59 programmable calculator - now I was hooked!
On top of it I get unlimited access to the PDP-9
computer of the nuclear center at the university. How
many ways can you spell Happy! Still coding mostly

48

in FORTRAN, using TI OpCodes to code on the TI-59,
taught myself Basic and then moved on to Pascal. PCs
were not available yet, Amiga and Commodore came
out, but I looked at them more like game machines
and I never got into computer games, so I never
worked with them. I did, however, purchase a
TI-99/4A color console, which I used to write some
short programs for operating a family restaurant.
Became very familiar with CP/M and worked on a
number of small side projects writing code for
insurance companies, payroll companies. I had also
started working and I now had access to an IBM
System/360 and the job to write code to solve
equations. It didn’t feel like a job, it felt like someone
was paying me to have fun! Then, when the IBM PC
came out it was all of a sudden, access to computers
at a different, much lower level! Unix, C,
Assembler,…

What was your first personal computer? What did you
find exciting about it?

I mentioned that the first computer I had fun with
was a CDC Cyber 6400 mainframe. It gave me the

49

opportunity to write code to numerically solve
mathematical models that up until then, to me,
seemed unsolvable! But the real joy came when the
PC and DOS arrived, because I could now access the
computer at its lowest level! I could not afford a true
blue PC, so I bought a compatible, SANYO MBC-550-
2 with 256K RAM, two floppy drives and a
monochrome monitor. I reasoned that I needed to buy
it because I was doing a side job for a small company
that was using Lotus 1-2-3 for their business and I
needed to have something at home to work on the
project, so I wouldn’t have to go to their location
every day. It was an excuse to buy the PC, but…

I was so happy when I brought it home, unpacked it
and fired it up. My own computer! The client
provided me with a license for Lotus 1-2-3 the next
day, and to my dismay, Lotus 1-2-3 would not work
on my SANYO. I came to find out that in order to
make it work, I needed a piggyback board to make
the video compatible with the IBM PC. It came with
DOS 2.11 and CP/M 86. I bought the board and was
able to run the program, but found quite a number of
incompatibilities along the way.

50

What was your first programming language?

I started coding in FORTRAN and continued coding
in it for many years. When I started using PCs, I
would also code in Basic, Pascal (and still some
FORTRAN).

• Although not a high level language, I wrote
lots of programs for the TI Professional
Program Exchange (PPX) on the TI-59, mostly
on nuclear-related subjects.

• A Payroll system for a restaurant with about 30
employees (TI Basic)

• A Quality control system for safety related
engineering drawings (MS Basic)

• An Inventory Control System (Pascal)

Did you use computers and programming to help you
in your Nuclear Engineering program?

Yes, I spent a lot of time during my graduate studies
and after I started working, in front of a punch card
machine, a DECwriter, or a monitor working on
nuclear-related programs. Some of them were utilities
to prep data, others were programs to calculate
complex multi-member radioactive decay and some

51

were custom, specialized code to inject into large code
systems we’d acquire from one of the National Labs.

Do you still do programming today?

I don’t do much programming these days, and
haven’t done for many years. I manage a group of
very good developers, so I leave the coding part to
them. On the rare occasion that I code, it’s usually C#
and SQL. Once in a while, I get personally interested
in a topic and will spend some time at home with
SciLAB.

Have done very little coding on the Mac, many years
ago. We are a Microsoft house using Windows.
However, on my system, I am using VMWare running
Linux Ubuntu, ArchBang and I just installed FreeDOS
(not sure how much time I will have to spend with it).

I don’t code anything worthwhile or of interest to
other developers. Those days are gone. Developers
now have access to great tools, no need to rely on old
relic coders like me. I have to say though, that some
nowadays may not have the instinctive knowledge of
base principles that we needed to have back in the

52

day. Sure, you can get ChatGPT, or some other on-
line system to instantly convert a number from
Base-10 to Base-16, or do binary arithmetic for you,
but I think it’s important to understand what is the
process that produces those results, that it’s not just
magic. It’s important to understand how registers
work, how the CPU is just a very fast processor of
straight forward operations, it’s not magic! Did you
get that this is one of my pet peeves?

Do you have any examples of interesting ways that
people used As-Easy-As?

There were many customers that had used As-Easy-
As for niche applications, it’s hard to remember them
all. Here are some that come to mind.

A user wrote a spreadsheet that would get real time
stock quotes through a paid service (using a dial-up
modem) and then dump the raw data to As-Easy-As
for DOS through the serial port. He had come up with
algorithms in As-Easy-As to analyze stock prices,
identify trends and try to determine good/bad
investments. We never followed up to see if they
made any money from those investments.

53

A major West coast fast food chain’s (2000+ locations)
corporate Dev team integrated As-Easy-As for DOS
into their management system at every location, with
a connection to headquarters, to manage daily sales,
cost analyses, goals, etc. I was directly involved in
that integration and learned a lot about “corporate”
software deployment workflows from them.

The Chinese version of As-Easy-As for DOS was
incorporated as a mandatory course in the Taiwanese
Computer Technical Schools curriculum. Multiple
instructional books were written in Chinese (I have
copies of some of them). As an aside… As-Easy-As
was also translated into Portuguese, Italian, Spanish,
German,… We did all the implementations at TRIUS.
We’d extract all strings from the code (menus, sub-
menus, error messages, function names, etc.), we’d
send them to our partners/licensees for the foreign
versions, they would translate them and then send
them back to us. We would then go back and replace
all strings in the source code with the foreign
translations. I was primarily responsible for doing all
these foreign implementations. The Chinese version
presented a problem because Chinese characters need
2 bytes for their representation, so the BIOS, built-for
1-byte ASCII character display, could not

54

accommodate them. Our Chinese partner had to come
up with a TSR, partial BIOS replacement that would
intercept interrupt calls from the program to remap
and display 2-byte characters on the screen. A fun
project.

Mazda US headquarters developed an integrated
leasing system using As-Easy-As for DOS that was
used by every US Mazda dealer.

A special custom version of As-Easy-As, for the HP
Palmtop, was used by a hospital group to schedule
and manage daily rounds.

A user interfaced As-Easy-As to a CNC table, through
the serial port, and used it to drive a cutter to create
all sorts of designs based on complex trigonometric
equations.

How did you decide what features to add in the next
version?

Anytime a user communicated a request for a new
feature, it was added to a long, running list of future
changes. When one of us thought of a new feature, it
was also added to the list. If a bug was reported or

55

discovered, it was also added to the list. On a daily
basis, we’d sit down and review the list and assign
priorities, using a multi-factor grading system.

Reported bugs and discovered problems were pushed
to the top of the list and were addressed immediately,
or not, depending on factors like…

• Is this an issue that affects some core
programming and capabilities of the program?

• Does it involve a commonly used (by many
users) function or feature?

• Does the user reporting have a dire need to use
it in some immediate work?

Then new features were reviewed based on…

• The number of users requesting it
• Whether it would have a wide impact, used by

most, many, a few potential users
• Effort level to implement the new feature
• How close are we to a new release

Although I can’t say it never happened, usually, the
decision for implementing a new feature was not
based on whether we added it to the list, or it was
suggested by the user. We tried to make the decision
on merit and factors like those listed above.

56

Was As-Easy-As used mostly by engineers, or was it
used by office workers too?

Although we don’t really have any real statistics, I’d
say it was the other way around. As-Easy-As was
mostly used by individuals and small businesses to
make managing their businesses easier, without
having to pay $400 for Lotus 1-2-3.

The engineering portion was primarily driven by our
needs. Having said that, since many engineers in
those days were PC hackers and they liked to build
things, they started adopting As-Easy-As, once they
discovered they had access to additional engineering
functions and formulas.

We also found that the program was used by a large
number of small investors that built their own
formulas to predict future stock performance, since
they thought “they” had the secret sauce.

57

Customer letter to TRIUS

Thank you for your reply to my recent enquiry about a
difficulty I was having with Draft Choice. Your
explanation was exactly right; I had failed to appreciate
the importance of the File, New dialog box in this
context.

58

Can I express again my great satisfaction with this
excellent product – I also have T*rb*c*d, and Draft
Choice knocks it into a cocked hat! The new features in
Version 2.0a, especially the enhanced dot matrix
printing facilities, are much appreciated.

Customer letter to TRIUS

59

I’m very glad to tell you that the program named
DRAFT CHOICE is for me an economist a very simple
and perfect program to draw figues and graphics what I
need.

I’m working by a PC/XT 640 kB machine, with 2 FDD
360 kB, without HDD, with HERCULES card, b/w
monitor mono and 9 pint [sic] printer (ROBOTRON
compatible with IBM Graphics).

Now I please to be a registered user of this program.
Because I’m a invalid man, and my disablement benefit
behave only $150 per month, so I cannot send You any
donation.

60

Customer letter to TRIUS

A few weeks ago I ordered a copy of PIVOT. Naturally
I had to delay installing it so you can imagine my
disappointment when I finally found a few minutes to
get started and it didn’t seem to work. Apparently
there was nothing on the disk.

61

The next day I called your sales office, assuming I
would ultimately get some satisfaction but not before
the usual complications and delays. Lots of account
number verification, evidence of suitable
documentation, appropriate authorizations and a trail
of correspondence, of course.

You can imagine how pleased I was to be transferred to
a young man who immediately projected a readiness to
assist me as a Customer. With a few brief questions he
determined that the solution required a replacement
disk and proceeded to make the necessary
arrangements. Three days later the Disk arrived. What
a surprise!

62

Customer letter to TRIUS

I am the registered user of your above-named products
which I to date have found to be excellent programs,
notwithstanding one or two defects which I understand
are being looked at by your software development
division.

63

However, my main purpose of writing to you is to
extend my most sincere thanks to your Technical
Support staff who have been outstanding in providing
me with solutions to the problems that I have
experienced so far. What has really impressed me has
been the promptness of their replies, never later than 24
hours after my FAX enquiry. I take my hat off to them.
I think a few other shareware developers should take
note of your support staff’s quick responses.

Are there any features that you wish you had added
to As-Easy-As for DOS?

I can’t really think of any feature in particular, though
I’m sure we had a few pages worth of features for
future consideration, when we stopped development
of As-Easy-As for DOS. I know that at some point, we
decided to branch off development and create a
lighter version (Alite), where we added the capability
of TSR (Terminate and Stay Resident). Users could
load the program and then have access to it over any
running application using a hot key combination - a
breakthrough at the time, for the single task operating
system.

64

One thing that comes to mind is text processing
features. I have to put it in context… In those days
and running a single task operating system, if you
were working in a spreadsheet or a database program
and you needed to write a letter, you’d have to exit
the current application, start your text editor (or word
processor), write the letter, print or save it, exit the
app and restart the app you were previously working
on to continue your work - a very time consuming
process. So, what a lot of us that spent most of our
time in As-Easy-As would do, is to write short letters
and notes and print them from within the program,
so we would waste time exiting and restarting
multiple applications. To do that effectively, we
needed “some” formatting options, like embed
CR/LF, right justify, bold and italicize words, word
wrap, etc. We started down that road, but never really
had an opportunity to implement those features. By
the way, Alite was developed primarily to eliminate
the exiting/restarting of all these apps.

65

Alite in PC Magazine, 1992

Shareware authors have stepped in here to fill the gap
left by the bigger vendors. I found three shareware
programs small enough to fit on a 720K floppy disk.
The smallest is a program called Alite … Taking only
about 200K of disk space and requiring only 256K of

66

RAM, Alite still gives you 2,048 rows by 128 columns,
EGA support, and five types of graphs (see Figure 1). It
directly supports Lotus 1-2-3 .WKS and .WK1 files,
and uses .WKS as its own format.

Alite is a scaled-down version of Trius’s original
spreadsheet, As-Easy-As, version 5.0 … which
provides 8,192 rows by 256 columns in about 320K of
disk space. It is also .WKS- and .WK1-compatible,
offers ten different graphs, has EMS and mouse
support, and can record macros. You can download the
latest shareware versions of Alite and As-Easy-As from
Trius’s BBS at …

Programmers are the best at spotting their own bugs
after-the-fact. Are there any bugs in As-Easy-As that
you look back on and think “I wish we’d fixed that”?

I don’t want to say there are no bugs in the program
(which I have not used in a while). I’m sure someone
can find some. However, believe it or not, we spent a
lot of time testing and correcting and re-testing before
a new release.

As you most likely realize, our testing was not just the
user interface - that was the easy part. In those early
days we didn’t have the luxury of “function

67

libraries,” in the context of what’s available today. For
example, If we wanted to add a function to calculate
mortgage payments, we couldn’t just call some
Payment function from some library. We had to come
up with the mathematical formula from base
principles, program the calculations needed directly
into Turbo Pascal and once implemented, we had to
then use the function in As-Easy-As multiple times
and perform hand-calculations to verify the results.
Lots of very long nights, in particular for some of the
more complex functions.

We had a small group of users that had been using
the program from the early days and they’d help us
with beta testing every new release. They were a great
asset! I know this was not part of your question, but
even beta testing was executed as a process. Every
beta tester had a signed agreement with us outlining
their responsibilities, their benefits, included an NDA,
etc.

We wouldn’t use this group for minor releases, we
would use them for major version releases that
included testing over a few weeks and they would
make a significant time/effort investment. For minor
maintenance releases, we used a sub-set of the group

68

made up of users that were willing to intensively test
over 2-3 days. And, for complete transparency, if the
release only included a couple of minor changes, we’d
sometimes rely only on our internal testing. Luckily,
this did not get us into any major trouble (which it
had the potential to).

69

About the manual

Registered users got a printed manual. How was this
written?

I wrote the first manual using PC-Write (another
shareware program by a good friend, Bob Wallace).
No pictures, no graphics, just ASCII characters. Even
the name of As-Easy-As on the front cover was
written using the ASCII line characters! I printed it on
a HP LaserJet II printer on 8.5”x11” paper, then had it
reduced, printed and bound by a local printer. We
printed 100 of them in the first run and they were
depleted in about a month. The next version was also
written in PC-Write and we produced 500 this time,
which lasted us about 3 months.

71

I also wrote the next couple versions of the manuals,
this time using WordPerfect and we had cover art
designed professionally for us. After that, the
manuals were written by a couple of employees, and I
would review and approve them. When we ported
the program to Windows, I took over writing the
manuals again.

What system or word processor did you use to
produce the manual?

The early user manuals were written using PC-Write.

We started using WordPerfect with subsequent
versions and then moved to Corel and Aldus
PageMaker before moving to Microsoft Word.

It was always a balance game. We liked PC-Write
because we had absolute control over it (embedded
control codes, etc.), but it was not a true word
processor, so as the look and feel of the manuals
changed, it became harder to get the desired results.

We moved to WordPerfect and liked it for its
embedded character mode, where you could see what
was happening under the surface (remember, we

72

were all hackers, in the good sense of the word).
When layout demands became even more needed, we
moved to the other products which were more
“publishing apps.”

What was the process to write the first manual?

Well, we have to take things in context. Back in the
old days, there used to be at least two or three
manuals, a user’s manual, a reference manual and (for
hardware) a service manual. Each was laid out
differently since they served different purposes. For
software, there were two; a user’s manual that took
the user step-by-step to achieving certain tasks, and a
reference manual that documented what each section
of the software did.

In writing the first As-Easy-As manual, I took a
hybrid approach. Menus structure in the program
already provided the outline of a “Reference Manual”
for me, so I started with that, explaining what each
menu command did, filling in with some general
spreadsheet sections and use cases for the menus,
where appropriate.

73

Writing manuals for subsequent versions of As-Easy-
As, and other software products, I used different
approaches with my favorite being to indeed write an
outline and then follow it to write the manual, while
still providing use-cases as examples of solved
problems.

What fonts did you use for the manual? What’s your
favorite font for print?

Font selection in the early days was not great, in
particular within the confines of the PC. If I recall
correctly, Times New Roman and Courier were the
most common ones with Helvetica starting to gain
some ground at the time. I believe I used Helvetica for
the first manual, and a mix of fonts later on, including
Garamond at some point.

Nowadays, I personally don’t generate a lot of
material for print, but I find myself using a couple of
fonts more than others. I mostly use the default fonts
(Arial, Calibri, Aptos,…). For printed matter
readability, I like Times New Roman, but most of the
people I know hate it - it’s not one of the modern

74

fonts. I guess that’s personal preference, just like ice
cream flavors.

What was the editing and publishing process like?

For the first manual, I wrote it, Dave quickly scanned
it and that was it. I did go over it a few times for
errors, but we wanted to get the information out to
the users who were already paying for our product,
so we released it, knowing that I’d have to go back
and re-do some of the work.

Once we had some employees and we could share the
workload, we did have some of them review the
manual (even some that had no computer
knowledge/experience) and provide feedback on
language, and ease-of-understanding. I was so close
to the program that whatever I wrote already made
sense to me, but I might be the only one it made sense
to. These reviewers were instrumental in improving
the user manual.

When it got to versions 5.2, 5.7, etc. we employed a
small agency to proofread what we wrote, but I have
to be honest, I don’t think their contribution was

75

significant. Sure, they may have caught a few
grammatical errors, but no substantive contribution.

What was the printing process like? How did you print
the manual?

I mentioned that I wrote the first As-Easy-As manual
using the PC-Write shareware program, written by
Bob Wallace, a friend and the 9th employee of
Microsoft. Once it was completed, I printed it on
8.5”x11” paper, single sided, on a LaserJet II printer. I
took the printed copy to a local printer, they photo-
copied it at 50% size reduction, so they could generate
8.5”x11” double sided spreads, then they cut them in
half and perfect bound them with an 80# glossy cover.
As you can tell, they spent a bunch of time to lay out
the half-size spreads and the final product didn’t look
like much. However, it’s hard to describe the pride
and euphoria when I picked up 2 boxes of manuals (I
believe 50 manuals in each box) and brought them
home. It felt as if I had achieved something
significant.

We followed the same process for a few of future user
manual versions, and then we moved to providing

76

digital files to a larger print house we had started
using, who also had in-house Aldus Pagemaker and
Corel capabilities that made it a lot easier to accept
and lay out the material we gave them.

What did the manual look like?

I have some of the manuals and have attached photos.
I may have some earlier ones, as well, somewhere in
the basement, but I’ll have to really look for them. I
wish I had kept one of the first batch of the manuals
we produced.

Here are a couple of versions of the As-Easy-As and
Alite (the lighter, TSR version) user manuals:

77

As-Easy-As 4.0 manual

78

As-Easy-As 5.7 manual

79

ALITE manual

80

As-Easy-As 4.00 manual, French edition, published in
France by SIR Informatique

81

As-Easy-As 4.00 manual, French edition

82

As-Easy-As manual, German edition, published in
Germany by Computer Solutions GmbH

83

“Potencia 10” manual, Spanish edition

84

Eccecutive manual, Italian edition

85

As-Easy-As books in Chinese, used in teaching
spreadsheets in Taiwan (required course in Computer
Technical Institutes). Published by Race International LTD

86

As-Easy-As books in Chinese, used in teaching
spreadsheets in Taiwan (required course in Computer
Technical Institutes). Published by Race International LTD

87

As-Easy-As books in Chinese, used in teaching
spreadsheets in Taiwan (required course in Computer
Technical Institutes). Published by Race International LTD

88

As-Easy-As books in Chinese, used in teaching
spreadsheets in Taiwan (required course in Computer
Technical Institutes). Published by Race International LTD

89

As-Easy-As books in Chinese, used in teaching
spreadsheets in Taiwan (required course in Computer
Technical Institutes). Published by Race International LTD

90

As-Easy-As books in Chinese, used in teaching
spreadsheets in Taiwan (required course in Computer
Technical Institutes). Published by Race International LTD

91

As-Easy-As books in Chinese, used in teaching
spreadsheets in Taiwan (required course in Computer
Technical Institutes). Published by Race International LTD

92

Thank you!

Jim Hall (editor)

I loved reading about the history of As-Easy-As
spreadsheet! Thanks to Paris Karahalios for this
outstanding interview about As-Easy-As and TRIUS
Inc.

I hope you enjoyed reading this interview collection
about the history, development, and impact of As-
Easy-As spreadsheet. This interview focused on As-
Easy-As for DOS, because that was the version I loved
using in the 1990s, and still use today on FreeDOS.

It’s hard to convey in words how As-Easy-As made
my work easier, but a demonstration might make it
more clear. Read on for a demonstration of how I
used As-Easy-As to perform data analysis in
undergraduate physics labs.

93

How I used As-Easy-As

When I was an undergraduate physics student, I used
As-Easy-As for all of my lab analysis. It didn’t take
long for me to learn how to navigate the application
using the keyboard. Like other DOS spreadsheets, As-
Easy-As used the / key to enter the menu, displayed
in the upper left corner of the screen. As-Easy-As
highlighted key letter for each new menu action,
making it easy to tap the next key for the submenu or
action that I needed. For example, to save a
spreadsheet file, you pressed the / key to enter the
menu, then F for File, then S for Store; the As-Easy-As
manual uses /File Store as shorthand notation for the
same action.

Let’s look at an example analysis for a lab I might
have done as an undergraduate physics student. A
classic “physics 101” experiment is the ball drop,
where we calculated the acceleration due to gravity
by dropping a steel ball from different heights and
measuring the time it takes for the ball to reach
“zero.” In our labs, we used two photo “gates” to
measure the time: when the ball passed through the
first gate, it started a timer. Passing through the

94

second gate stopped the timer, with a resolution to
0.001 seconds.

We can use the equation of motion to determine how
to calculate the acceleration due to gravity:

y (t)= y0+v0 t+
1
2
a t2

The y0 and v0 terms are both “zero” in this
experiment, leaving a linear relationship between
distance and time-squared:

y (t)=1
2
a t2

Simulating the data

I don’t have my notebooks from my old physics labs,
but we can generate suitable data by factoring a
random “error” value for the time measurement. This
simulates a small delay in the photo gates, or
undergraduate students not paying too close attention
to setting up the photo gates at each new height.

Let’s start a new spreadsheet in As-Easy-As. After
typing in the titles for two columns and formatting a
line with /Range Format bOx, we can use the /Data

95

Fill action to enter data in a range. Select the range
from A3 to A13, and specify “2” for the starting value
and “-0.1” for the step value. This fills the specified
range from values counting down from 2 to 1 at
regular intervals.

Entering sample data in a spreadsheet

As undergraduate physics students, we might have
performed the ball drop experiment from heights
ranging from one to two meters, at every 0.1 meter
increment distance. We can make this range look like
actual measurements by formatting the values to one

96

decimal place with /Range Format Fixed and entering
“1” for the number of digits.

Formatting to one decimal place

We can use the equation of motion to determine the
time a ball would take to drop from each height.
Solving for t gives the spreadsheet calculation
@SQRT(2*A3/9.8). This uses the expected value of
the acceleration due to gravity of about 9.8, and the
first value in the “dist(m)” column.

97

Calculating the time

After we have this calculation in cell B3, we can copy
the calculation into the other cells in that column
using /Copycell, selecting the source cell, and
specifying the output cells.

98

Copying the calculation

To simulate actual lab conditions, we should add
some “error” values to each measurement. The @RAND
function generates a random value between zero and
one, although it never really gets to 1.0. Divide the
random number by 100, and use the @ROUND function
to truncate the final value to three decimal places.
This effectively adds some random “delay” to the
time measurement in the last decimal place.

99

Adding delay to the time measurement

These values depend on a random number, which
will change if the spreadsheet performs a global
recalculation, such as with the F9 key. To get static
values, we can use /Range Copy Value to copy the
column of numbers as values, not calculations. The
result gives us a column of numbers that will never
change, even during a recalculation.

100

Copying the values from the calculations

The acceleration due to gravity

The equation of motion predicts a linear relationship
between distance and time-squared, with a/2 for the
slope and the intercept at zero. Let’s start the analysis
by calculating time-squared in the next column. This
is a simple calculation to multiply the “time” value by
itself.

101

Calculating time-squared

With this calculation, we have all that we need to
calculate the acceleration due to gravity, as
“measured” in this experiment. Before we take the
final steps, we might clean up the spreadsheet by
using /Range Format Fixed to set the time values to
three decimal places, and time-squared values to four
places.

102

Formatting the time-squared values

The intermediate calculations for “t(s)” and “t+err”
aren’t needed here. We could delete these columns
with /Sheet Delete Column, but let’s instead use
/Sheet Colwidth Hide to hide them. We actually need
to perform this action once per column.

103

Hiding columns B and C

The final action is to perform a linear regression on
the time-squared and distance data. Use /Data
Regress Xdata to specify the time-squared range for
the regression, and /Data Regress Ydata for the
distance.

104

The x data range

To generate the regression and display a chart at the
same time, use /Data Regress View. As-Easy-As will
prompt for where to save the regression output, then
will use that data to generate a chart.

105

Specify the output range

As-Easy-As uses default values to draw the chart:
data points are “×” marks joined by a green line, the
line fit is a dotted white line with squares at each
value.

106

As-Easy-As also generates a chart

The final analysis

The linear regression shows several important values:
the calculated intercept and slope are at the top, and
the “error” values for both are towards the bottom. In
this calculation, the linear regression calculated
-0.02679 for the intercept and 4.918491 for the slope.

107

Highlighting the calculated slope value

We can’t really “claim” these values in a final
analysis. The “error” values determine the actual
precision: the intercept value is plus or minus 0.016370
and the calculated slope is plus or minus 0.076856.

As an undergraduate physics student, I preferred to
only display the final values to the number of decimal
places indicated by the precision. Let’s highlight the
important values, and set them to three decimal
places; the first significant digit is actually in the
second decimal place, but our undergraduate lab
analysis typically went “out” one more decimal place,

108

and we rounded the values to the first significant digit
in the “error” when reporting the result.

Bright white on a cyan background

To compare, I’ve also entered the expected slope and
intercept. Using the equation of motion, we expect a
line with time-squared and distance to have a slope of
9.8/2, or 4.9 (half the acceleration due to gravity) and a
zero intercept (a ball at zero height requires no time to
fall).

In this analysis, we calculated the slope at 4.92 plus or
minus 0.08, and an intercept at -0.02 plus or minus 0.02.

109

The final result

One reason that charting the results was so easy is
that As-Easy-As can generate a chart using a
“formula” calculation, using @X as a placeholder for
the x value in the line. This formula is the last value in
the linear regression output, in cell H12.

110

The linear regression formula

As a last step, I would usually print a copy of the
chart to attach in my lab notebook. As-Easy-As
supported many options to generate a printed copy of
a chart, including PIC or PCX image files, PSP for
printing on a PostScript laser printer, and PLT files for
plotting to a pen plotter. For example, here’s a PCX
copy of my chart, after applying some additional
formatting such as colors, ranges, marks, and line
styles.

111

Final linear regression

112

	Why I loved As-Easy-As
	Let’s start with an introduction. Who are you, and what do you do?
	You were a co-founder of TRIUS. How did the company start?
	How did TRIUS change over time?
	TRIUS Inc shared the registration code for As-Easy-As, that was a great gesture to say “Thanks” to the community of original users. Were you behind this decision?
	You co-created the As-Easy-As spreadsheet for DOS. How did that come about? Why write a spreadsheet?
	How did you create As-Easy-As? What was the process to design and create a spreadsheet application?
	What were some standout features in As-Easy-As?
	As-Easy-As was shareware. What was “shareware” and how did that work out as a business model?
	As-Easy-As was originally a DOS program. What things do you have to “balance” when you write DOS programs?
	What’s an example of something you can do in DOS programming that’s hard to do in Windows or Linux?
	What things have gotten easier in programming?
	What are some “tricks” or methods you used to write a DOS application like this?
	As-Easy-As was originally written in Turbo Pascal, then Delphi. Why change to Delphi?
	How did you “discover” computers?
	What was your first personal computer? What did you find exciting about it?
	What was your first programming language?
	Did you use computers and programming to help you in your Nuclear Engineering program?
	Do you still do programming today?
	Do you have any examples of interesting ways that people used As-Easy-As?
	How did you decide what features to add in the next version?
	Was As-Easy-As used mostly by engineers, or was it used by office workers too?
	Are there any features that you wish you had added to As-Easy-As for DOS?
	Programmers are the best at spotting their own bugs after-the-fact. Are there any bugs in As-Easy-As that you look back on and think “I wish we’d fixed that”?
	Registered users got a printed manual. How was this written?
	What system or word processor did you use to produce the manual?
	What was the process to write the first manual?
	What fonts did you use for the manual? What’s your favorite font for print?
	What was the editing and publishing process like?
	What was the printing process like? How did you print the manual?
	What did the manual look like?
	How I used As-Easy-As
	Simulating the data
	The acceleration due to gravity
	The final analysis

